Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species.

Identifieur interne : 000205 ( Main/Exploration ); précédent : 000204; suivant : 000206

The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species.

Auteurs : Sebastian Virreira Winter [Allemagne] ; Arturo Zychlinsky [Allemagne]

Source :

RBID : pubmed:29414783

Descripteurs français

English descriptors

Abstract

Inflammasomes are cytosolic complexes that mature and secrete the inflammatory cytokines interleukin 1β (IL-1β) and IL-18 and induce pyroptosis. The NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome detects many pathogen- and danger-associated molecular patterns, and reactive oxygen species (ROS)/reactive nitrogen species (RNS) have been implicated in its activation. The phenazine pyocyanin (PCN) is a virulence factor of Pseudomonas aeruginosa and generates superoxide in cells. Here we report that PCN inhibits IL-1β and IL-18 release and pyroptosis upon NLRP3 inflammasome activation in macrophages by preventing speck formation and Caspase-1 maturation. Of note, PCN did not regulate the AIM2 (absent in melanoma 2) or NLRC4 inflammasomes or tumor necrosis factor (TNF) secretion. Imaging of the fluorescent glutathione redox potential sensor Grx1-roGFP2 indicated that PCN provokes cytosolic and nuclear but not mitochondrial redox changes. PCN-induced intracellular ROS/RNS inhibited the NLRP3 inflammasome posttranslationally, and hydrogen peroxide or peroxynitrite alone were sufficient to block its activation. We propose that cytosolic ROS/RNS inhibit the NLRP3 inflammasome and that PCN's anti-inflammatory activity may help P. aeruginosa evade immune recognition.

DOI: 10.1074/jbc.RA117.001105
PubMed: 29414783
PubMed Central: PMC5880120


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species.</title>
<author>
<name sortKey="Virreira Winter, Sebastian" sort="Virreira Winter, Sebastian" uniqKey="Virreira Winter S" first="Sebastian" last="Virreira Winter">Sebastian Virreira Winter</name>
<affiliation wicri:level="3">
<nlm:affiliation>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zychlinsky, Arturo" sort="Zychlinsky, Arturo" uniqKey="Zychlinsky A" first="Arturo" last="Zychlinsky">Arturo Zychlinsky</name>
<affiliation wicri:level="3">
<nlm:affiliation>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany zychlinsky@mpiib-berlin.mpg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29414783</idno>
<idno type="pmid">29414783</idno>
<idno type="doi">10.1074/jbc.RA117.001105</idno>
<idno type="pmc">PMC5880120</idno>
<idno type="wicri:Area/Main/Corpus">000263</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000263</idno>
<idno type="wicri:Area/Main/Curation">000263</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000263</idno>
<idno type="wicri:Area/Main/Exploration">000263</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species.</title>
<author>
<name sortKey="Virreira Winter, Sebastian" sort="Virreira Winter, Sebastian" uniqKey="Virreira Winter S" first="Sebastian" last="Virreira Winter">Sebastian Virreira Winter</name>
<affiliation wicri:level="3">
<nlm:affiliation>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zychlinsky, Arturo" sort="Zychlinsky, Arturo" uniqKey="Zychlinsky A" first="Arturo" last="Zychlinsky">Arturo Zychlinsky</name>
<affiliation wicri:level="3">
<nlm:affiliation>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany zychlinsky@mpiib-berlin.mpg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Apoptosis Regulatory Proteins (immunology)</term>
<term>Calcium-Binding Proteins (immunology)</term>
<term>Caspase 1 (immunology)</term>
<term>Cell Line (MeSH)</term>
<term>DNA-Binding Proteins (immunology)</term>
<term>Glutaredoxins (immunology)</term>
<term>Immune Evasion (MeSH)</term>
<term>Inflammasomes (immunology)</term>
<term>Interleukin-18 (immunology)</term>
<term>Interleukin-1beta (immunology)</term>
<term>Macrophages (immunology)</term>
<term>Macrophages (microbiology)</term>
<term>Macrophages (pathology)</term>
<term>Mice (MeSH)</term>
<term>NLR Family, Pyrin Domain-Containing 3 Protein (immunology)</term>
<term>Pseudomonas Infections (immunology)</term>
<term>Pseudomonas Infections (pathology)</term>
<term>Pseudomonas aeruginosa (immunology)</term>
<term>Pyocyanine (immunology)</term>
<term>Reactive Nitrogen Species (immunology)</term>
<term>Reactive Oxygen Species (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Caspase-1 (immunologie)</term>
<term>Espèces réactives de l'azote (immunologie)</term>
<term>Espèces réactives de l'oxygène (immunologie)</term>
<term>Glutarédoxines (immunologie)</term>
<term>Infections à Pseudomonas (anatomopathologie)</term>
<term>Infections à Pseudomonas (immunologie)</term>
<term>Inflammasomes (immunologie)</term>
<term>Interleukine-1 bêta (immunologie)</term>
<term>Interleukine-18 (immunologie)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Macrophages (anatomopathologie)</term>
<term>Macrophages (immunologie)</term>
<term>Macrophages (microbiologie)</term>
<term>Protéine-3 de la famille des NLR contenant un domaine pyrine (immunologie)</term>
<term>Protéines de liaison au calcium (immunologie)</term>
<term>Protéines de liaison à l'ADN (immunologie)</term>
<term>Protéines régulatrices de l'apoptose (immunologie)</term>
<term>Pseudomonas aeruginosa (immunologie)</term>
<term>Pyocyanine (immunologie)</term>
<term>Souris (MeSH)</term>
<term>Échappement immunitaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Apoptosis Regulatory Proteins</term>
<term>Calcium-Binding Proteins</term>
<term>Caspase 1</term>
<term>DNA-Binding Proteins</term>
<term>Glutaredoxins</term>
<term>Inflammasomes</term>
<term>Interleukin-18</term>
<term>Interleukin-1beta</term>
<term>NLR Family, Pyrin Domain-Containing 3 Protein</term>
<term>Pyocyanine</term>
<term>Reactive Nitrogen Species</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Infections à Pseudomonas</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Caspase-1</term>
<term>Espèces réactives de l'azote</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glutarédoxines</term>
<term>Infections à Pseudomonas</term>
<term>Inflammasomes</term>
<term>Interleukine-1 bêta</term>
<term>Interleukine-18</term>
<term>Macrophages</term>
<term>Protéine-3 de la famille des NLR contenant un domaine pyrine</term>
<term>Protéines de liaison au calcium</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines régulatrices de l'apoptose</term>
<term>Pseudomonas aeruginosa</term>
<term>Pyocyanine</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Macrophages</term>
<term>Pseudomonas Infections</term>
<term>Pseudomonas aeruginosa</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Macrophages</term>
<term>Pseudomonas Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Immune Evasion</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Lignée cellulaire</term>
<term>Souris</term>
<term>Échappement immunitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Inflammasomes are cytosolic complexes that mature and secrete the inflammatory cytokines interleukin 1β (IL-1β) and IL-18 and induce pyroptosis. The NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome detects many pathogen- and danger-associated molecular patterns, and reactive oxygen species (ROS)/reactive nitrogen species (RNS) have been implicated in its activation. The phenazine pyocyanin (PCN) is a virulence factor of
<i>Pseudomonas aeruginosa</i>
and generates superoxide in cells. Here we report that PCN inhibits IL-1β and IL-18 release and pyroptosis upon NLRP3 inflammasome activation in macrophages by preventing speck formation and Caspase-1 maturation. Of note, PCN did not regulate the AIM2 (absent in melanoma 2) or NLRC4 inflammasomes or tumor necrosis factor (TNF) secretion. Imaging of the fluorescent glutathione redox potential sensor Grx1-roGFP2 indicated that PCN provokes cytosolic and nuclear but not mitochondrial redox changes. PCN-induced intracellular ROS/RNS inhibited the NLRP3 inflammasome posttranslationally, and hydrogen peroxide or peroxynitrite alone were sufficient to block its activation. We propose that cytosolic ROS/RNS inhibit the NLRP3 inflammasome and that PCN's anti-inflammatory activity may help
<i>P. aeruginosa</i>
evade immune recognition.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29414783</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>04</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>293</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2018</Year>
<Month>03</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species.</ArticleTitle>
<Pagination>
<MedlinePgn>4893-4900</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA117.001105</ELocationID>
<Abstract>
<AbstractText>Inflammasomes are cytosolic complexes that mature and secrete the inflammatory cytokines interleukin 1β (IL-1β) and IL-18 and induce pyroptosis. The NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome detects many pathogen- and danger-associated molecular patterns, and reactive oxygen species (ROS)/reactive nitrogen species (RNS) have been implicated in its activation. The phenazine pyocyanin (PCN) is a virulence factor of
<i>Pseudomonas aeruginosa</i>
and generates superoxide in cells. Here we report that PCN inhibits IL-1β and IL-18 release and pyroptosis upon NLRP3 inflammasome activation in macrophages by preventing speck formation and Caspase-1 maturation. Of note, PCN did not regulate the AIM2 (absent in melanoma 2) or NLRC4 inflammasomes or tumor necrosis factor (TNF) secretion. Imaging of the fluorescent glutathione redox potential sensor Grx1-roGFP2 indicated that PCN provokes cytosolic and nuclear but not mitochondrial redox changes. PCN-induced intracellular ROS/RNS inhibited the NLRP3 inflammasome posttranslationally, and hydrogen peroxide or peroxynitrite alone were sufficient to block its activation. We propose that cytosolic ROS/RNS inhibit the NLRP3 inflammasome and that PCN's anti-inflammatory activity may help
<i>P. aeruginosa</i>
evade immune recognition.</AbstractText>
<CopyrightInformation>© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Virreira Winter</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zychlinsky</LastName>
<ForeName>Arturo</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>From the Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany zychlinsky@mpiib-berlin.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C540422">Aim2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051017">Apoptosis Regulatory Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002135">Calcium-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516006">Glrx protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C587672">IL1B protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058847">Inflammasomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020382">Interleukin-18</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053583">Interleukin-1beta</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C512299">Ipaf protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071199">NLR Family, Pyrin Domain-Containing 3 Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C492716">Nlrp3 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026361">Reactive Nitrogen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9OQM399341</RegistryNumber>
<NameOfSubstance UI="D011710">Pyocyanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.36</RegistryNumber>
<NameOfSubstance UI="C000628184">Casp1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.36</RegistryNumber>
<NameOfSubstance UI="D020170">Caspase 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051017" MajorTopicYN="N">Apoptosis Regulatory Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002135" MajorTopicYN="N">Calcium-Binding Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020170" MajorTopicYN="N">Caspase 1</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="N">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058847" MajorTopicYN="N">Inflammasomes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020382" MajorTopicYN="N">Interleukin-18</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053583" MajorTopicYN="N">Interleukin-1beta</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071199" MajorTopicYN="N">NLR Family, Pyrin Domain-Containing 3 Protein</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011552" MajorTopicYN="N">Pseudomonas Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011550" MajorTopicYN="N">Pseudomonas aeruginosa</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011710" MajorTopicYN="N">Pyocyanine</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026361" MajorTopicYN="N">Reactive Nitrogen Species</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Pseudomonas</Keyword>
<Keyword MajorTopicYN="Y">inflammasome</Keyword>
<Keyword MajorTopicYN="Y">inflammation</Keyword>
<Keyword MajorTopicYN="Y">interleukin 1 (IL-1)</Keyword>
<Keyword MajorTopicYN="Y">oxygen radicals</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no conflicts of interest with the contents of this article.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29414783</ArticleId>
<ArticleId IdType="pii">RA117.001105</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA117.001105</ArticleId>
<ArticleId IdType="pmc">PMC5880120</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Pathog Dis. 2013 Apr;67(3):159-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 13;469(7329):221-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e54205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23342104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 17;284(29):19203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19478336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2015 May 1;22(13):1111-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25330206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 Jun 27;38(6):1142-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23809161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jun 9;48(22):4838-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19371084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2015 May 1;22(13):1097-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25686490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1981 Dec;20(6):814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6798928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxins (Basel). 2016 Aug 09;8(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27517959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2012 Dec;47(6):738-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22865623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Sep 1;382(Pt 2):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15175007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2002 Feb 15;168(4):1861-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17963-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24127597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Feb 04;6:6201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25648527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 Nov 15;191(10 ):5230-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24089192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 Aug 22;39(2):311-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23954133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2010 Mar;10 (3):210-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20168318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jun;5(6):553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 17;279(38):39414-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15262965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2011 Dec;13(14-15):1133-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21839853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Mar 15;174(6):3643-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2015 Jul;108(1):163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25980833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2004 Dec;10(12):599-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15567330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 1;13(5):621-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 1998 Apr;53(4):795-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9547373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 13;288(37):26480-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2003 Feb;284(2):L420-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2017 Mar 27;8:333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28396663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jun 13;289(24):17020-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24798340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1981 Mar;88(3):526-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6783667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Gene Ther. 1999 Sep 20;10(14):2273-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10515447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2013 Feb;21(2):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23140890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol Environ Health A. 2011;74(1):43-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21120747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 3;283(40):27144-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2008 Aug;9(8):866-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2015 Mar;21(3):193-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25500014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25313054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Rep. 1997 Jun;17(3):259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9337481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2017 Jun 5;214(6):1725-1736</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28465465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 26;281(21):14864-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16551630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2016 Nov;13(6):722-728</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27063466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2014 Oct 16;6(12 ):a016287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25324215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2017 Jan;14 (1):65-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27345727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2016 May 2;126(5):1783-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27043286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2011 Apr;21(4):558-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21283134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2015 Oct 14;84(1):56-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26467446</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Berlin</li>
</region>
<settlement>
<li>Berlin</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Berlin">
<name sortKey="Virreira Winter, Sebastian" sort="Virreira Winter, Sebastian" uniqKey="Virreira Winter S" first="Sebastian" last="Virreira Winter">Sebastian Virreira Winter</name>
</region>
<name sortKey="Zychlinsky, Arturo" sort="Zychlinsky, Arturo" uniqKey="Zychlinsky A" first="Arturo" last="Zychlinsky">Arturo Zychlinsky</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000205 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000205 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29414783
   |texte=   The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29414783" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020